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Abstract
Purpose – This paper aims to analyze forecasting problems from the perspective of information
extraction. Circumstances are studied under which the forecast of an economic variable from one
domain (country, industry, market segment) should rely on information regarding the same type of
variable from another domain even if the two variables are not causally linked. It is shown that Granger
causality linking variables from different domains is the rule and should be exploited for forecasting.
Design/methodology/approach – This paper applies information economics, in particular the study of
rational information extraction, to shed light on the debate on causality and forecasting.
Findings – It is shown that the rational generalization of information across domains can lead to effects
that are hard to square with economic intuition but worth considering for forecasting. Information from
one domain is shown to affect that from another domain if there is at least one common factor affecting
both domains, which is not (or not yet) observed when a forecast has to be made. The analysis suggests
the theoretical possibility that the direction of such effects across domains can be counter-intuitive. In
time-series econometrics, such effects will show up in estimated coefficients with the “wrong” sign.
Practical implications – This study helps forecasters by indicating a wider set of variables relevant for
prediction. The analysis offers a theoretical basis for using lagged values from the type of variable to be
forecast but from another domain. For example, when forecasting the bond risk spread in one country,
introducing in the time-series model the lagged value of the risk spread from another country is
suggested. Two empirical examples illustrate this principle for specifying models for prediction. The
application to risk spreads and inflation rates illustrates the principles of the approach suggested here
which is widely applicable.
Originality/value – The present study builds on a probability theoretic analysis to inform the
specification of time-series forecasting models.

Keywords Economic forecasting, Information extraction

Paper type Research paper

1. Introduction

Should an investor or a regulator who wants to forecast the value of an economic variable
(e.g. a quantity, a price or a risk premium) from one domain (country, industry, market
segment) rely on information regarding the same type of variable from another domain even
if the two variables are not causally linked? Since the key contributions by Granger (1969,
1980), many econometricians have taken the following position on this question: a stable
correlation between two variables across time (i.e. Granger causality) serves as an
operational concept of cause and effect and is sufficient for the purpose of forecasting[1].
The described approach stands in contrast to a tradition of structural modeling in
econometrics that perceives the predictability of economic variables to be the result of the
effects of agents’ decisions and market forces that play out over time[2]. This tradition uses
economic analysis in the specification of forecasting models. This latter perspective
motivates forecasters to be aware of both the danger of overfitting and possible spurious
correlations and induces them to check whether their specifications and estimation results
are in line with economic theory. This restraint in the specification of models tends to make
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researchers choose the explanatory variables to come primarily from the same domain
(e.g., country or industry) as the variable to be forecast. This even applies to recent
contributions such as Bora et al. (2016) and Diks and Wolski (2016). As will be shown in this
article, such restraint may be mistaken when the focus is on prediction. We will apply
information economics, in particular the study of rational information extraction, to make this
point.

In particular, the notion of rational generalization of information becomes relevant here[3].
The analysis will show that the mechanism of generalization of information across domains
can lead to effects that are hard to square with economic intuition but worth being
considered for forecasting. We will detail that information from one domain affects that from
another domain if there is at least one common factor affecting both domains, which is not
(or not yet) observed when the forecast has to be made[4]. Data on a variable from another
domain are thus used because these contain information on a common driving force.
Examples of a common driving force could be the current level of general technology, the
general level of risk aversion or the state of animal spirits of entrepreneurs. Such variables
are, at the very least, difficult to estimate but, more importantly, they are impossible to
measure in real time.

In keeping with our general perspective, we can readily also think of domain-specific
driving variables that are difficult or impossible to assess in real time. Examples here would
encompass variables like the level of domain-specific factor inputs or the level of
industry-specific confidence. Note that the problem of unobservable or hidden variables
gains in importance the more short-term the variables are to be forecast: forecasting annual
data might not be plagued by the problem of unobserved variables. However, with monthly,
daily or higher-frequency observations, the issue becomes increasingly important. For the
practice of econometric analysis, the situation with unobservable variables indicates the
following: instead of estimating structural equations, the forecaster relies on multivariate
time-series analysis. We will detail how this practice can benefit from information
economics[5].

In what follows, we will use the terms “output” or “outcome” for variables to be forecast. In
the formal model outlined in the next section, we analyze cases where the common driving
force affects variables in different domains in the same direction. For example, rising risk
aversion will lead to withdrawals of funds from all risk-taking companies and industries and
thus reduces output everywhere. This setup helps to highlight a puzzling form of
information generalization: the fact that its effects can appear paradoxical. We speak of a
paradoxical effect of information generalization if an increase in output in one industry
diminishes the probability that output in the other industry will increase. The term
paradoxical is warranted because the common driving force affects the two output series
in the same direction. With respect to the econometric analysis of time series, paradoxical
effects show up in estimated coefficients that appear to have the wrong sign. Our analysis
suggests that such coefficient estimates should not automatically be discarded.

The paper is organized as follows: Section 2 outlines the model of two domains in which
domain-specific factors and a general factor together stochastically determine domains’
outcomes. The model makes use of the theoretical apparatus of Hirshleifer and Riley
(1992). Section 3 provides numerical illustrations, and Section 4 illustrates the resulting
effects in a time-series regression framework. Section 5 offers two empirical illustrations,
and Section 6 concludes the article.

2. The model

We study a situation with two domains. These could be two countries, industries or market
segments. The central element of the model is the assumption that the outcome in any
domain is affected by two types of factors at the time of forecast:[6] a general factor
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(denoted by G for general or global) and a domain-specific factor (denoted by A and B, one
for each domain). A, B and G are all unobservable at the time of the forecast. In our setup,
these factors can have only one of two values (1 or 0, i.e. high or low) and follow
homogeneous Markov chains:

P (At�1 � At) � �

P (Bt�1 � Bt) � �

P (Gt�1 � Gt) � �
(1)

Hence, each factor remains on the level of the last period with a given probability and
changes its value with one minus that probability. The combination of the domain-specific
factor and the general factor probabilistically determines the outcome in a domain. Hence,
there is no causality running from the outcome in one domain to the outcome in the other
domain. Figure 1 shows the different combinations of factors and the implied probabilities
for a high-level (denoted by q� ) and a low-level (denoted by q

�
) outcome. To keep the

problem tractable, the number of parameters used to model probabilities is limited to two
(i.e. u and v). To give an example, with A � 0 and G � 0, the probability that qA equals q�
is u. We assume that v � u and 1 � v � u which implies 1 � u � v and 1 � v � u � 0. This
means that a switch of any factor from 0 to 1 increases the likelihood of a high-level
outcome in a domain.

This setup helps us to clarify an important and intriguing aspect of the generalization of
information: the fact that its effects can be normal, neutral or paradoxical. We will speak of
a normal effect of the generalization of information if the rationally assessed value of a
variable in one domain in the next period is positively affected by the current value of the
variable in the other domain. In other words, the information that domain A’s outcome is
high at present makes it more likely that domain B’s outcome will be high in the future. The
case of a neutral effect of the generalization of information describes the case where the
level of domain A’s outcome does not predict domain B’s outcome despite the fact that
there is a common driving force affecting the two outcomes. We speak of a paradoxical
effect if the level of A’s outcome negatively affects the expected level of B’s outcome. This
means the rationally assessed likelihood of B’s outcome is lower if A’s outcome is high
compared to the situation where the latter is low. The term paradoxical is warranted in this
case because the common driving force affects the two outcomes in the same direction.

As indicated before, the generalization of information describes a situation in which
information from one variable (i.e. the outcome in one domain) from which there is no causal
force acting on another variable (i.e. the outcome in the other domain) is relevant for
forecasting that other variable. This can be expressed in terms of conditional probabilities:

Figure 1 Probabilities of different outcomes in a domain j
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P (qt�1
B �qt

B) � P (qt�1
B �qt

A � qt
B) (2)

The case of a normal effect of the generalization of information describes a situation where
the probability of an improvement in a domain’s level of outcome (i.e. from q

�
to q� ) is

positively affected by the other domain’s level of outcome.

P (qt�1
B � q� �qt

A � q� � qt
B � q

�
) 	 P (qt�1

B � q� �qt
B � q

�
) (3)

A paradoxical effect of the generalization of information is given when:

P (qt�1
B � q� �qt

A � q� � qt
B � q

�
) 
 P (qt�1

B � q� �qt
B � q

�
) (4)

[7]The intermediate situation is then the case of neutral effects of the generalization of
information.

P (qt�1
B � q� �qt

A � q� � qt
B � q

�
) � P (qt�1

B � q� �qt
B � q

�
) (5)

To compare the two relevant conditional probabilities under a given parameterization,
we first need to derive the probability of a change in the level of outcome from t to
t � 1 in one domain conditional only on its currently realized outcome. To be more
specific, we compute the probability that the outcome of domain B is high in the next
period conditional on the information that the outcome is low in the current period,
i.e. P (qt�1

B � q� �qt
B � q

�
). Given that the factors affecting outcome follow homogeneous

Markov chains, all possible combinations of factors have, a priori, the same probability
of occurring. Hence, if we ask with what probability the combination qt

B � q
�

arises from

one specific combination of the Factors B and G, application of the Bayes theorem
gives us the answer shown in Figure 2[8].

Several more steps have to be taken, and the derivation of the results is quite involved.
First, we need to compute, for every possible combination of factors in one domain, the
probabilities with which each of the four possible combinations of factors is realized in the
next period. For example, the probability that any given B/G-combination is repeated is ��.
Alternatively, the probability that Factor B switches value and G remains unchanged is
(1 � �)�. Now the four probabilities P (Bt�1,Gt�1�qt

B � q
�
), for the four different

B/G-combinations, are the sum of the probabilities of each B/G-combination given qt
B �

q
�

(as outlined above) weighted with the probabilities that these combinations lead to

Bt�1,Gt�1. Here is an example:

P (B
�

t�1 � G
�

t�1 |qt
B � q

�
) � ��

1 � u
2

� (1 � �)�
1 � v

2
� �(1 � �)

v
2

� (1 � �)(1 � �)
u
2

(6)

In a last step, the probabilities thus computed have to be multiplied with the probabilities
P (qt

B � q� � Bt,Gt) and added up in order to find P (qt�1
B � q� �qt

B � q
�
). After collecting and

rearranging a large number of terms this probability can finally be expressed as:

P (qt�1
B � q� �qt

B � q
�
) � 0.5 � (� � 0.5)(u � v)2 � (� � 0.5)(1 � u � v)2 (7)

Figure 2 Probabilities with which qt
B � q comes from specific combination of factors
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A sufficient condition for P (qt�1
B � q� �qt

B � q
�
) � 0.5, i.e. a change in qB is less likely than a

no-change is � 	 0.5 and � 	 0.5.

Next, we derive the conditional probability of an improvement in a domain’s level of
outcome given that the outcome in the other domain is already high. Following the same
sort of calculations as indicated before (Appendix gives details), we find this conditional
probability to be:

P (qt�1
B � q� |qt

A � q� � qt
B � q

�
) � 0.5 � (� � 0.5)

(u � v)2

(u � v)(2 � u � v)
(8)

Equation (8) suggests the following:

P1. The probability of the outcome of a domain is not affected by the persistence
(i.e. �) of the general factor.

The intuition behind this result is the following: different productivity levels in the two
industries indicate a 50-50 chance that G is either high or low. In this situation, the level of
persistence of the general factor is not relevant for forecasting. For a discussion of the key
insights of this analysis, it is helpful to reformulate (8) to the form:

P (qt�1
B � q� �qt

A � q� � qt
B � q

�
) � P (qt�1

B � q� �qt
B � q

�
) � �(� � 0.5) � (� � 0.5)

(9)

with � � � (1 � u � v)2(u � v)2 / (u � v)(2 � u � v) � 	 0 and  � (1 � u � v)2 	 0

Based on (9), the following proposition can be stated and proved:

P2. Even if domain factors and the general factor are positively autocorrelated, effects
from the rational generalization of information of the normal, neutral or paradoxical
form can result.

Proof: From (9), it follows that with � 	 0.5 and � 	 0.5, the difference
P (qt�1

B � q� �qt
A � q� � qt

B � q
�
) � P (qt�1

B � q� �qt
B � q

�
) can be positive, negative or zero.

The intuition here is that the relative importance of the domain-specific factor and the
general factor in the two domains (i.e. u and v) determines whether a high outcome in the
other domain is attributed to a favorable domain factor there or rather to favorable general
conditions. The more it is attributed to favorable general conditions – and the more
persistent G is – the more likely a normal effect will result. In contrast, the more the outcome
difference in the two domains is attributed to differing domain conditions – and the more
persistent and the more important the domain effect of the domain under consideration –
the more likely will be a paradoxical effect. In such cases the good times in the other
domain strengthen the impression that the bad times in a given domain have a
domain-specific cause and are liable to last. This insight can be clarified further by formally
analyzing the condition under which the generalization of information has just a neutral
effect. Intuition can be built by focusing on the special and polar case where u � 0. Based
on equation (9), we find that the neutral effect emerges when:

v �
2(� � 0.5)

(� � 0.5) � (� � 0.5)
(10)

If v is above this critical level – i.e. the partial effect of the domain-specific factor is strong

enough – then the paradoxical effect results. Figure 3 illustrates this relationship
numerically. The table shows the critical level of v for different combinations of � and �. It
is immediately apparent that the paradoxical effect is only possible if � 	 �. Furthermore,
the higher the value of �, the stronger must be the domain-specific factor v to generate a
paradoxical effect. The empty cells in the table indicate parameter-combinations for which
the paradoxical effect can be excluded.
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3. Stochastic simulations

To illustrate the generalization of information and its various effects, we stochastically
simulate two interesting parameterizations of the model. This means that we draw random
numbers of the latent variables A, B, G and then let a further round of random draws
determine the outcomes for qA and qB according to the given probability parameters. For
convenience concerning the interpretation of the regression results that follow, we take the
two possible levels of the q-variables to be 0 and 1. We analyze two cases. In the first case,
we have � � 0.8, � � 0.8, � � 0.8, u � 0.1,v � 0.3. According to equation (9), the
generalization of information in this case has the normal effect. The theoretically implied
conditional probabilities are P (qt�1

B � q� �qt
B � q

�
)�0.380 and P (qt�1

B � q� �qt
A � q� � qt

B �

q
�
) � 0.481. We stochastically draw 1,000,000 sets of observations for A, B and G and

compute qA and qB values. With these observations, the frequency of a high level of qB after
a low level of qB in the previous period turns out to be 0.380. Furthermore, the frequency of
observing a high level of qB after periods with both a low level of qB and a high level of qA

is 0.481. Hence, looking at numbers rounded to the third digit, the simulated frequencies
are equal to the analytically derived conditional probabilities.

The second case is the parameter combination � � 0.95,� � 0.95,� � 0.55,u � 0.0,v �

0.5, i.e. highly persistent and influential domain-specific factors together with a weakly
persistent general factor. In this case, the generalization of information has a paradoxical
effect. The theoretically derived probability values are P (qt�1

B � q� �qt
B � q

�
) � 0.375 and

P (qt�1
B � q� �qt

A � q� � qt
B � q

�
) � 0.350, and the corresponding simulated frequencies

(rounded to the third digit) are 0.375 and 0.350. That is, a high value of qA today reduces
the probability that qB moves from a low value today to a high value tomorrow. Again,
rounded to the third digit, the simulated results are equal to the analytically derived results.

4. Regression representations

In this section, we document the correspondence between the frequency format and the
intuitively easier-to-grasp time-series regression format. Furthermore, the regression
representation leads to the discussion of estimated coefficients that appear to have –
compared to economic intuition – the wrong sign[9]. Consider regressing the qt

B on a
constant and its lagged value (i.e. qt�1

B )

qt
B � � � qt�1

B (11)

The value of the coefficient � gives the probability qt�1
B � 1 conditional on observing qt

B � 0
based on this univariate regression. For the data simulated in Section 3 with one million

Figure 3 Critical values of v given combinations of �- and �-values
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draws of each variable, we find the following regression results for the two cases
considered. For the normal case, we have:

qt
B � 0.380 �

(0.006)

0.240qt�1
B ,

(0.009)

R2 � 0.057, D.W. � 2.043,
(12)

The estimated �-parameter matches the relevant frequency and the theoretically derived
probability documented in Section 3. We now turn to including the information from the
other domain. In terms of time-series econometrics, this implies estimating the multivariate
regression:

qt
B � � � �qt�1

B � �qt�1
A (13)

Here, the estimate of the relevant conditional probability P (qt�1
B � q� �qt

A � q� � qt
B � q

�
) is the

coefficient sum � � �. Consider the outcome of the regression exercise:

qt
B � 0.332 �

(0.000)

0.186qt�1
B �

(0.010)

0.149qt�1
A ,

(0.010)

R2 � 0.076, D.W. � 2.042
(14)

Here, the sign of the coefficient of qt�1
A is positive, and the sum of coefficient values � �

� is 0.481. Again, this value coincides with the frequency reported in Section 3. Consider
next the results for the outcome in the paradoxical case. Here the univariate result is:

qt
B � 0.375 �

(0.000)

0.249qt�1
B ,

(0.001)

R2 � 0.062, D.W. � 2.075,
(15)

and for the multivariate case we have:

qt
B � 0.389 �

(0.000)

0.259qt�1
B �

(0.001)

0.039qt�1
A ,

(0.001)

R2 � 0.063, D.W. � 2.077
(16)

As to be expected for the paradoxical case in the estimate of equation (16), the
�-coefficient is negative. Note again the equality of the estimated �-coefficients (0.375) and
coefficient sum (0.389�0.039 � 0.350) with the respective frequencies reported in
Section 3. In both the normal and the paradoxical cases, the results document Granger
causality between the two variables considered. Hence, taking into account information
from another domain tends to improve the forecast[10].

5. Empirical illustrations

In the following, we offer two empirical applications for the effects of the generalization of
information. The first application concerns financial data of relatively high-frequency.
Concretely, we analyze daily observations of risk spreads of high-yield commercial bonds.
While general empirical analyses of bond risk spreads have appeared (Reilly et al., 2010),
forecast studies are hard to find[11]. The variable studied is the spread (weighted across
ratings) between yields on publicly traded commercial bonds of below investment grade
(those rated BB or below) and yields on term-wise comparable government bonds. It
measures what investors at any point in time receive for bearing risks (e.g. liquidity and
default risks). The data are compiled by Merrill Lynch and are made available by the
Federal Reserve Bank of St. Louis. For the analysis, we use data from January 1998 until the
end of September 2016. The two economic domains studied here are Euro- and US
dollar-denominated bonds. The corresponding variables are termed S € and S$. The
estimated bivariate time-series model in first differences leads to the following results:[12]
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�St
€ � �0.0005 �

(0.001)

0.409 �St�1
€ �

(0.047)

0.088�St�1
$ ,

(0.031)

R2 � 0.125, D.W. � 2.076 (17)

�St
$ � 0.0003 �

(0.001)

0.247 �St�1
$ �

(0.036)

0.059�St�1
€ ,

(0.023)

R2 � 0.089, D.W. � 2.023

All relevant coefficients are statistically significant at least at the 5 per cent level of
significance[13]. The positive coefficients of the lagged variable from another domain
document the effect of generalization of local information: there is no known economic
mechanism through which the change in the risk spread in one country would induce a change
in the risk spread of another country over time. Instead, a variation in one domain is informative
and helps prediction because it is influenced by forces that drive risk spreads everywhere.

The next example concerns a variable where only monthly observations are available. Here, we
endeavor to predict inflation rates in different countries. Forecasting studies on inflation rates
abound in the literature. But yet again, even studies that consider foreign effects besides, e.g.
measures of domestic capacity and inflation expectations, emphasize variables (like oil prices
or a commodity price index), where an economically plausible causal link exists (Joshi and
Acharya, 2011). We depart from this routine and pick the UK and Japan to illustrate the
principles explored in this study. Again, there exists no plausible mechanism through which
either British or Japanese inflation would significantly affect inflation in the other country through
a causal process. However, it is plausible – in keeping with the analysis outlined – that a
combination of country-specific and global forces drives national inflation rates around the
globe. Thus, we would expect inflation in one country to help predict inflation in the other
country. This is exactly what we find. Here are the results of estimating the bivariate system of
monthly inflation rates for the sample 1955 through 2014:[14]

InftUK � 0.002 �

(0.000)

0.425 Inft�1
UK �

(0.059)

0.127Inft�1
JP,

(0.037)

R2 � 0.377, D.W. � 2.205 (18)

InftJP � 0.002 �

(0.000)

0.184Inft�1
JP �

(0.070)

0.144Inft�1
UK,

(0.058)

R2 � 0.290, D.W. � 2.100

The statistically significant coefficients of the foreign variables again document the potential for
a useful generalization of information across domains. In conclusion, forecasters lacking
up-to-date information on driving variables are advised to rely on (lagged) information
concerning variables from other domains. As the empirical analysis of bond risk spreads and
inflation rates illustrates, data from outside the domain (i.e. from another country) tend to help
to improve the forecast. For practical applications, it remains to decide from what domain the
explanatory variable should come. Besides data availability, the condition that domains need
to be affected by a common general variable can be a helpful guide[15].

6. Conclusions

Forecasters and decision makers should indeed consider relying on variables outside the
domain for which they forecast even when these variables do not influence the variable to be
predicted through mechanisms suggested by standard economic theory. We study how
Granger causality between variables can result because important driving variables are – in
principle or at least at the time of the forecast – not observable. Under such circumstances
information generalization across domains is rational because variables from another domain
can reveal information on common driving forces. Hence, Granger causality linking variables
from different domains may be the rule and should be exploited for forecasting.
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The theoretical analysis suggests the possibility that the direction of such effects across
domains can be counter-intuitive. In time-series analysis, such effects show up in
coefficients with the “wrong” sign. This study suggests that such coefficient estimates
should not automatically be discarded. However, only exceptional circumstances in terms
of the necessary parameter constellation can generate such counter-intuitive effects. For
practical econometric work with the purpose of forecasting we find the intuitively plausible
direction of the effect in the empirical examples studied here. Although we limit the
application to the two examples of bond risk spreads and inflation rates, the approach
suggested here is widely applicable. Summing up, this study should help forecasters by
indicating a wider set of relevant variables for their prediction models.

Notes

1. More precisely, Granger causality asks for past observations of X (the “causal variable”) to be
correlated with that part of the current value of Y (the variable to be forecast) that cannot be
explained by past observations of Y.

2. The Cowles Commission has been an important force in the development of the structural
approach (Christ, 1994). It has to be noted that the focus on identification of structural parameters
of behavioral functions serves also purposes other than just forecasting.

3. The generalization of information is related to the concept of information contagion (Calvo and
Mendoza, 2000; Kodres and Pritsker, 2002; Garleanu et al., 2015; Chen and Suen, 2016).

4. If the common driving variable is observable at the time of the forecast, there is no reason for the
forecaster to rely on information regarding the other domain.

5. More concretely, with unobservable driving variables, the forecaster refrains from quantifying effects of
local and global forces on domain variables combined with forecasts of these driving forces. Instead,
only the lagged values of the variables of interest serve as the conditioning information.

6. The important point here is that these factors are not yet observed in time for the forecast.

7. For reasons of symmetry we have for the case of the normal effect of a generalization of information
P (qt�1

B � q
�
�qt

A � q
�

� qt
B � q� ) 	 P (qt�1

B � q
�
�qt

B � q� ) and for the paradoxical effect

P (qt�1
B � q

�
�qt

A � q
�

� qt
B � q� ) 
 P (qt�1

B � q
�
�qt

B � q� ).

8. Consider as an example: P (B
�

t,G
�

t�qt
B � q

�
) � �0.25(1 � u)�/�0.25(1 � u) � 0.25(1 � v) �

0.25u � 0.25v� � (1 � u)/2.

9. Kennedy (2005) and Wang and Wang (2009) discuss other causes for estimates with wrong signs
and aspects of how to deal with such findings.

10. The corresponding estimates for variable qA as a function of lagged values of qA and qB lead to
symmetrical results.

11. On a slightly different turn Giesecke et al. (2011) study bond default rates and find that spreads
do not help to predict default rates.

12. In reality the simplification of perfect symmetry across regions used in our model will not hold.
Hence, symmetry of estimated coefficients across equations should not be expected.
Specification (17) does not claim to represent the best possible specification for forecasting the
variables considered here.

13. The reported coefficient estimates for the lagged observations from the other country are only
marginally affected when, instead of working with first differences, we estimate a vector error
correction model that includes the stationary residual from the cointegration regression St

$ �

1.408 � 0.685 St
€. It is noteworthy that the error correction term only appears in a statistically

significant way in the explanation of the €-risk spread.

14. Phillips–Perron tests show logs of the price levels of the two countries as separately non-stationary
but not cointegrated. Instead, both inflation rates are stationary variables.
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15. When considering introducing variables from several domains (e.g. from several other countries),
the danger of overfitting, as always, must be considered.
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Appendix. An outline of the derivation of results
The elements of analysis used here can be found in Hirshleifer and Riley (1992, chapter 5).
The first step is the calculation of the probabilities of the outcome (qt

A � q� ) � (qt
B � q

�
)

given all possible eight combinations of the three factors A, B, and G. Figure A1 shows
these joint probabilities.

In a further step, Bayes theorem answers the question with what probability the
combination (qt

A � q� ) � (qt
B � q

�
) arises from any specific combination of these factors.

Take the example of the combination A
�

t,B
�

t,G
�

t

P (A
�

t, B
�

t, G
�

t |qt
A � q� � qt

B � q
�
) �

u(1 � u)

2u(1 � u) � 2u(1 � v) � 2v(1 � u) � 2v(1 � v)

�
u(1 � u)

2(u � v)(2 � u � v)
(A1)

In this way, we determine the likelihood of every combination of the values for A, B, and G
given that (qt

A � q� ) � (qt
B � q

�
). Next, we compute, for every combination of factors, the

probabilities with which each of the eight possible combinations of factors are obtained in
the next period. For example, the probability that any given combination is repeated is ���.
Alternatively, the probability that Factors B and G remain the same but that A switches
value is (1 � �)��. Now the probabilities P (At�1,Bt�1,Gt�1�qt

A � q� � qt
B � q

�
) are the sum of
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the probabilities of each A/B/G-combination given (qt
A � q� ) � (qt

B � q
�
) weighted with the

probabilities that these combinations lead to the various At�1,Bt�1,Gt�1 combinations. Here
is an example:

P (A
�

t�1, B
�

t�1, G
�

t�1�qt
A � q� � qt

B � q
�
)

� �
X

�
Y

�
Z

�P (A
�

t�1, B
�

t�1, G
�

t�1�At, Bt, Gt) � P (At, Bt, Gt�qt
A � q� � qt

B � q
�
)� (A2)

Again we multiply all these probabilities with P (qt
A � q� � qt

B � q� �At,Bt,Gt) and P
(qt

A � q
�

� qt
B � q� �At,Bt,Gt), respectively. Finally, the resulting terms P( qt�1

A � q� � qt�1
B �

q� �qt
A � q� � qt

B � q
�
) and P ( qt�1

A � q
�

� qt�1
B � q� �qt

A � q� � qt
B � q

�
) are added up to reach

the result for P( qt�1
B � q� �qt

A � q� � qt
B � q

�
).
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