Social learning increases the acceptance and the efficiency of punishment institutions in social dilemmas

Özgür Gürerk

July 2011

University of Erfurt, Nordhäuser Str. 63, 99089 Erfurt, Germany

Abstract

Endogenously chosen punishment institutions perform well in increasing contributions and long-term payoffs in social dilemma situations. However, they suffer from (a) initial reluctance of subjects to join the punishment institution and (b) initial efficiency losses due to frequent punishment. We investigate experimentally the effects of social learning on the acceptance and the efficiency of a peer punishment mechanism in an institution choice experiment. Providing participants with a social history – presenting the main results of an identical previous experiment conducted with different subjects – decreases the initial reluctance towards the punishment institution significantly. With social history, cooperative groups reach the social optimum more rapidly and there is lower efficiency loss due to reduced punishment. Our findings shed light on the importance of social learning for the acceptance of seemingly unpopular but socially desirable mechanisms.

JEL classification: C92; H41

Keywords: Social dilemmas; Social history; Social learning; Community choice; Punishment; Institution choice
1. Introduction

For groups with an *exogenously* fixed composition of members, experimental studies identify peer punishment mechanism as a valuable means to sustain cooperation in social dilemmas (e.g. Ostrom et al., 1992 or Fehr and Gächter, 2000; see also the reviews by Gächter and Hermann, 2009; and Chaudhuri, 2011). While punishment succeeds to increase contributions, however, it also causes an efficiency loss due to high punishment acts, especially in the beginning phase of the play. As a consequence, punishment institutions do not produce significantly higher (overall) payoffs compared to standard voluntary contribution mechanism (VCM) without the punishment option (cf. Egas and Riedl, 2008). This observation seems to be valid not only for the “standard western” subject pools. In a cross cultural study, Herrmann et al. (2008) show that in the majority of experiments punishment does not increase the payoffs significantly when it is compared to standard VCM.

The efficiency losses observed in punishment institutions, however, are not independent of the institutional framework and parameters. Extending the experimental time horizon may improve the overall efficiency of the peer-punishment mechanism. If a public goods experiment with punishment stage is played over 50 periods it produces significantly higher overall payoffs than the VCM (Gächter et al., 2008). Nevertheless, also in this study there still remains a considerable amount of *initial* efficiency loss. Apparently, it takes time for the punishment institution to unfold its full impact on payoffs.

Another strand of recent studies show that *endogenous* choice of punishment institutions may also improve contributions to a public good and increase the institution’s efficiency (e.g., Sutter et al., 2010; Gürerk et al., 2006, 2010). Sutter et al. (2010) investigate the effects of institution choice by voting between an institution with VCM, an institution with reward possibility, and an institution with punishment possibility. Under unanimous voting, the punishment institution is rarely chosen. When it is selected, however, it is the most successful institution in eliciting high

1. Ambrus and Greiner (2010) report a similar finding in a slightly different setup where punishment has a higher (stronger) leverage.

2. In an experiment also with 50 periods, Rand et al. (2009) find that a significant difference between the efficiency of a punishment institution and non-punishment institution exists only in the second half of the experiment.
contributions. In Gürerk et al. (2010), subjects individually choose between communities with and without punishment possibilities before interacting with others who choose the same institution. This simple voting with feet mechanism has great impact on contributions. Towards the end of the experiment, contributions in the punishment institution converge to almost 100%, and virtually no punishment is needed. As a consequence, in the second half of the experiment, the efficiency of the punishment institution is significantly higher than the efficiency of the non-punishment institution. This finding confirms the long-term efficiency observed in exogenous settings for the case of an endogenously chosen punishment institution.

Despite this “long-term” success of the endogenously chosen punishment institutions, however, a considerable amount of initial punishment activity decreases the institution’s efficiency in the beginning phase. The initial loss is large enough to make the overall efficiency of punishment institution not significantly different than the efficiency of the non-punishment institution.

The research question motivating this paper is: How can be the initial efficiency loss mitigated in order to improve the overall performance of endogenously chosen punishment institutions? This question is closely linked to the initial acceptance of the punishment institution. In endogenous settings, subjects are (initially) reluctant to join the punishment institution. With repetition, however, the acceptance of the punishment institution increases. In this study we ask, how the initial acceptance – and linked with that – the initial efficiency of the endogenous punishment institution could be increased?

Before proposing an answer to this question let us speculate on the reasons for the initial reluctance to choose punishment institution. First, subjects may have a “natural aversion” against punishment since they associate negative feelings with it. Social psychologists define negative sanctions as deliberate acts that lead to unpleasant inner states that the punished person wants to avoid. Recent experimental studies show that subjects indeed often prefer non-punishment communities when they have the choice between punishment and non-punishment or reward institutions (Botelho et al., 2007; Gürerk et al., 2009; Sutter et al., 2010). Second, subjects may also fear to be exposed to unjustified punishment. In fact, in experiments, punishment of high

3 The reluctance against punishment institutions is found by Sutter et al. (2010) and Gürerk et al. (2006, 2009, 2010). In Gürerk et al. 2010, more than 90% of subjects opt for the punishment institution in the end. In the first period, only one third of the subjects opt for it.
contributor is a frequently observed phenomenon (see Cinyabuguma et al., 2006; Herrmann et al., 2008). Third, for subjects there may be a rational reason to wait before joining the punishment institution. If the (initial) expected level of cooperation is the same in both communities then it may be rational for subjects to join non-punishment community first (to avoid the risk of punishment) and to wait until the punishment community becomes the more profitable community before joining it. A fourth possible explanation is that subjects simply do not anticipate correctly that the punishment community is the more efficient community in the long-run. If subjects knew ex-ante that the punishment community is the superior community they would probably join it much quickly.

In this study, we focus on the investigation of the two last proposed possible explanations. We contrast them by asking whether the lack of information about the high cooperation levels in the punishment institution is a critical force that drives the reluctance to join the punishment institution. We conjecture that endogenous choice coupled with the possibility of “social learning” (Bandura, 1977) may be a good way to improve the acceptance and the overall efficiency of punishment institutions. As an experience-based information device, a social history may lower people’s reluctance towards the punishment institution by correcting the false expectation on its performance. To test this we conduct a social history treatment (SHT) which is the exact replication of the PUN treatment from the study of Gürerk et al. (2010). The only difference is that in SHT, a social history reporting the main results of PUN is given to the subjects. If – contrary to our conjecture – people are “rational waiters”, social history should even increase the reluctance against the punishment institution because it shows clearly the initial payoff disadvantages of the punishment institution.

In their influential “trust game” study, Berg et al. (1995) find that a social history treatment – compared to the baseline treatment – has significant effects on subjects’ choices. With social history, both amounts invested by the sender and the amount sent back by the responder increase. Our conjecture is also backed by experimental work on (naive) “advice giving” which unfolds its impact through social learning. Schotter (2003) reviews the first studies on advice giving and finds that advice changes behavior of the advice takers, i.e., subjects who have taken advice, play the same game differently than the advice givers. Chaudhuri et al. (2006) report that advice –

4 For details of the information presented in the social history see Section 2.
given as free-form text messages by individuals – increases contributions to a public good if it is made public and becomes common knowledge. On the other hand, there is also some literature reporting no change in subjects’ behavior when they are provided with information on earlier play of another cohort (Fehr and Rockenbach, 2003).

The following section describes the experimental design and procedure. Results are presented in Section 3. Section 4 concludes.

2. Experimental Design

The experiment is based on a social dilemma game of 30 repetitions including three stages in each period: In Stage 0, \(N\) participants in each “society” (representing an independent observation) choose (without a cost) between a non-punishment community (NPC) and a community with punishment possibilities (PuC). In Stage 1, each player is endowed with 20 experimental tokens and can anonymously invest \(g\) (\(0 \leq g \leq 20\)) in the joint project.\(^5\) The defining characteristic of a social dilemma is fulfilled independent of the number of members \(n^\theta\) with \(\theta \in \{1,2\}\) in each community because the marginal per capita return \(a\) is \(1/n^\theta_i < a < 1\) for all \(n^\theta_i\) with \(2 \leq n^\theta_i \leq N\). In PuC, Stage 1 is followed by a punishment stage (Stage 2). Here, all subjects are endowed with 20 additional tokens and may anonymously assign punishment tokens to each other (subjects in NPC also receive additional 20 tokens and simply keep these). Each received punishment token lowers the payoff of the punished subject by three tokens. After each period, all participants receive feedback about contributions, received punishment tokens and payoffs in both communities.

In the social history treatment SHT, the social history is handed out to subjects before the experiment starts. Participants were told that they would receive a report sheet about the decisions done by the participants of a previous experiment which was conducted in the eLab before and that they should read the report. For both communities, the social history separately tabulates the averages of the number of community members, contributions, received punishment tokens in PuC, and the payoffs of PUN for each period. Additionally, the over-time evolutions of the

\(^5\)If only a single player joins a community, no joint project can be created and the total endowment of the player is automatically transferred to own private account. Therefore this player has no decision in Stage 1 and Stage 2.
averages are visualized in figures. The experiment was programmed and conducted with z-Tree (Fischbacher, 2007). Subjects were recruited for voluntary participation via the online recruitment system ORSEE (Greiner, 2004) and were randomly allocated to treatments. An experimental session lasted on average two hours. Average earnings were 24 Euros.

3. Results

3.1. Initial (first) period results

Does social history lead to an immediate effect on subject’s behavior?

Result 1. Social History increases the initial acceptance to join the punishment institution and increases the initial cooperation in PuC.

Social history increases the initial acceptance to join the punishment institution significantly. In SH-treatment, in the first period, 54.2% of subjects prefer PuC. This percentage is significantly higher \(p = 0.037 \) than the fraction of subjects who opt for PuC in the baseline treatment PUN (31.2%). Moreover, social history has also an immediate effect on contributions. In period 1, the fraction of high contributions \((g \geq 15) \) in the punishment community of SHT (74.0%) is significantly larger \(p = 0.051 \) than the percentage of high contributors in PuC of PUN (53.7%). The overall initial cooperation level is also higher with social history. In PuC of SHT, subjects contribute 78.7% of their endowment, while in PuC of PUN 66.0% of the endowment is invested \(p = 0.086 \).

Though not statistically significant, social history has also an immediate effect on punishment behavior. In the first period, subjects in PuC of SHT invest less tokens (2.3) in punishment than subjects in PuC of PUN (3.4, \(p = 0.138 \)). Higher contributions and lower punishment in period 1 result in higher first period payoffs in PuC of SHT (29.2 tokens) than in PuC of PUN (26.4 tokens). This difference, however, is statistically not significant \(p = 0.431 \).

6 See Appendix for the social history handed out to subjects.
3.2. Evolution of community choices and contributions

Does the higher initial acceptance of the punishment community and the higher initial cooperation in PuC of SHT lead to a more accelerated acceptance of PuC by the subjects who initially opted for the non-punishment community than observed in PUN?

Result 2. “Full participation in PuC” is reached more rapidly and is more stable in SHT than in PUN.

Panel (a) of Figure 1 shows the evolution of community choices. In PUN as well as in SHT, for all but one society (observation) it is true that there is at least one period in which all subjects of the respective society join the punishment community. Such a period of “full participation in PuC” is observed much earlier in PuC of SHT (on average in period 9.6) than in PuC of PUN (period 17.6, $p = 0.033$). Moreover, once established, the state of full participation is more stable in PuC of SHT than in PuC of PUN. The average number of consecutive periods with full participation in PuC amounts to 15.4 periods in PuC of SHT but only to 5.6 in PuC of PUN ($p = 0.027$). Thus, in PuC of SHT, full cooperation is established not only more quickly but it also lasts longer. In the very last period, only one subject (1.4%) in SHT does not opt for PuC whereas in PUN 8 subjects (8.4%) choose NPC.

7 All reported non-parametric statistical tests are two-tailed Mann-Whitney U-tests.
3.3. Overall punishment behavior

Does social history affect the frequency and the severity of punishment acts? Whether social history would lead to less or more severe punishment than observed in the baseline treatment is not clear. Social history could lead to less frequent punishment because of the initial high cooperation level and the higher number of cooperative subjects. It could also lead to even more frequent punishment if social history encourages subjects who would not punish otherwise to imitate their predecessors’ behavior from the baseline treatment and punish.
Result 3. Overall, punishment causes fewer expenses and it is less severe in PuC of SHT than in PuC of PUN.

The less contributing subjects\(^8\) in PuC of SH-treatment receive more often punishment than their counterparts in PuC of the baseline treatment. In PuC of SHT, less-contributors receive punishment tokens in 38.5% of all possible cases while in PuC of PUN this is only true in 25.5% of the cases \((p = 0.101)\). Hence, subjects in PuC of SHT show less mercy against less-contributors than subjects in PuC of SHT do. Overall, tokens sent per punishment instance, however, is significantly lower in PuC of SHT (2.4 tokens) than in PuC of PUN (3.1) \((p = 0.043)\). Interestingly, in PuC of SHT, subjects with relatively high contributions are also punished. On average, a punished subject in PuC of SHT contributed more to the joint project than a punished subject in PuC of PUN (17.4 versus 15.1 tokens, \(p = 0.022\)). It seems that subjects in PuC of SHT try to establish a higher contribution norm. The frequency of unjustified punishment, i.e., the percentage of instances when the punished person contributed equally or more than the punisher, is roughly the same in PuC of SHT (1.7%) and in PuC of PUN (1.8%). The average severity of unjustified punishment, however, is lower in PuC of SHT (1.5 tokens per instance) than in PuC of PUN (1.9 tokens, \(p = 0.075\)).

3.4. Efficiency

Does social history decrease the efficiency losses? How does the efficiency develop over the course of the experiment?

Result 4. The payoffs of the PuC catch up with the payoffs of NPC more quickly in SHT than in PUN. Overall efficiency (over both institutions) is higher in SHT than in PUN.

In SHT as in PUN, in the first period, subjects in NPC obtain higher payoffs than subjects in PuC. In the SH-treatment, average payoffs in PuC catch up with the payoffs in NPC more rapidly than in PUN. In SHT, already in fifth period, members of the punishment institution earn more than members of NPC (cf. Figure 1 panel d). From period five on, the payoffs in PuC are constantly higher than the payoffs in NPC. In contrast, in PUN, the payoffs in PuC oscillate strongly and catch up with the payoffs in NPC only in period 11 (cf. Figure 1 panel c). The average period

\(^8\) With respect to subject i, less-contributors are subjects who contribute strictly less than subject i in PuC in a given period.
where the earnings in PuC exceed the earnings in NPC is 7.2 in SHT, while it is 15.1 in PUN \((p = 0.037)\). Hence, PuC becomes the more profitable community much earlier in SHT than in PUN.

From the social planner’s perspective, one of the most interesting issues concerns the efficiency in the society including all its communities. Figure 2 shows the overall society earnings in both treatments in three phases of the experiment. In all phases, the payoffs in the SH-treatment are higher than in PUN. In SHT, the average payoff of a society (over all three phases) amounts to 47.1 tokens while it is 44.5 in PUN. The surplus ratio, i.e., the actual surplus generated by cooperative behavior in the experiment divided by the maximum possible surplus amounts to 59.2\% in SHT and 37.5\% in PUN \((p = 0.101)\).

![Figure 2: Overall payoffs](image)

4. Conclusion

In this study, we explore whether informed subjects are less reluctant than uninformed subjects to join an institution with a peer punishment mechanism in a social dilemma situation and whether the society consisting of informed subjects obtain a greater efficiency. We observe a clear effect of social history on the institution choice. With social history, initially, significantly more subjects join the punishment community than in the baseline treatment. Moreover, with social
history, subjects joining the punishment community start to cooperate on a much higher level than the subjects who join the punishment community in the baseline treatment. With social history, less-contributors are punished more frequently but not as severe as in the baseline treatment. In the beginning, in both treatments, the payoff differential between the punishment and the non-punishment community is negative for the punishment institution. However, with social history, the payoffs in PuC catch up with the payoffs in NPC more quickly than they do in PUN. As a consequence, the punishment community of SHT attracts subjects more quickly than the PuC of the baseline treatment. The socially efficient “ideal” state of “full participation” with (almost) full contributions is reached significantly earlier in PuC of SHT than in PuC of PUN. With social history, overall efficiency gains for the society as a whole are higher than without it.

Although our findings unambiguously show that social history has clearly increased the initial acceptance and the overall efficiency of the punishment institution still there is potential for “improvement”. Roughly half of the subjects (45.8%) do not join the punishment community initially. Why is this? Is it the fear of unjustified punishment? Future research could clear this question by conducting an experiment that could restrict unjustified punishment in the punishment institution. Possibly more subjects would choose the punishment institution initially.

Our findings shed light on the importance of experience-based information for the acceptance of seemingly unpopular but socially desirable mechanisms. In reality, often, there is resistance among citizens against reforms that are considered efficiency-enhancing by the experts. One reason for the resistance may be that there is a “status quo bias” when the implications of the reform for individuals are not clear. People resist to reform if they do not know who the gainers and who the losers will be (cf. Fernandez and Rodrik, 1991). If the consequences of the installation of an (new) institution to solve a social dilemma appear disadvantageous (at least to some individuals), clear communication and explanation of the merits of the planned action in a coherent way may help to mitigate possible frictions that possibly occur during the transition process.
Appendix

Instructions for the experiment
At the beginning of the experiment you will be randomly assigned to one of 2 subpopulations each consisting of 12 participants. During the whole experiment you will interact only with the members of your subpopulation. At the beginning of the experiment, 1000 experimental tokens will be assigned to the experimental account of each participant. Course of Action: The experiment consists of 30 rounds. Each round consists of 2 stages. In Stage 1, the group choice and the decision regarding the contribution to the project take place. In Stage 2, participants may influence the earnings of the other group members.

Stage 1
(i) The Group Choice
In Stage 1, each participant decides which group she wants to join. There are two different groups that can be joined:

<table>
<thead>
<tr>
<th></th>
<th>Influence on the earnings of other group members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A:</td>
<td>No</td>
</tr>
<tr>
<td>Group B:</td>
<td>Yes, by assigning negative points</td>
</tr>
</tbody>
</table>

(ii) Contributing to the Project
In stage 1 of each round, each group member is endowed with 20 tokens. You have to decide how many of the 20 tokens you are going to contribute to the project. The remaining tokens will be kept by you.

Calculation of your payoff in stage 1: Your payoff in stage 1 consists of two components:

- tokens you have kept = endowment -your contribution to the project
- earnings from the project = 1.6 x sum of the contributions of all group members / number of group members
Thus, your payoff in Stage 1 amounts to: 20 -your contribution to the project + 1.6x sum of the contributions of all group members / number of group members

The earnings from the project are calculated according to this formula for each group member. Please note: Each group member receives the same earnings from the project, i.e. each group member benefits from all contributions to the project.

Stage 2: Assignment of Tokens

In stage 2 it will be displayed how much each group member contributed to the project. (Please note: Before each round a display order will randomly be determined. Thus, it is not possible to identify any group member by her position on the displayed list throughout different rounds.) By the assignment of tokens you can reduce the payoff of a group member or keep it unchanged.

In each round each participant receives additional 20 tokens in stage 2. You have to decide how many from the 20 tokens you are going to assign to other group members. The remaining tokens are kept by yourself. You can check the costs of your token assignment by pressing the button Calculation of Tokens.

Each negative token that you assign to a group member reduces her payoff by 3 tokens.

If you assign 0 tokens to a group member her payoff won’t change.

Calculation of your payoff in stage 2: Your payoff in stage 2 consists of two components:

- tokens you kept = 20 -sum of the tokens that you have assigned to the other group members

- less the threefold number of negative tokens you have received from other group members

Thus, your payoff in Stage 2 amounts to: 20 -sum of the tokens you assigned to other group members -3x (the number of tokens you received from other group members)

Calculation of your round payoff: Your round payoff is composed of Your payoff from Stage 1 20 -your contribution to the project + 1.6 x sum of the contributions of all group members / number of group members
+ Your payoff from Stage 2 20 - sum of the tokens that you have assigned to other group members

-3 x (the number of tokens you have received from other group members

= Your round payoff

Special case: If you are the only member in your group you receive 20 tokens in Stage 1 and 20 tokens in Stage 2, i.e., your round payoff amounts to 40. You neither have to take any action on Stage 1 nor on Stage 2.

Information at the end of the round: At the end of the round you receive a detailed overview of the results obtained in all groups. For every group member you are informed about her: Contribution to the project, payoff from the Stage 1, assigned tokens (if possible), received tokens (if possible), payoff from Stage 2, round payoff.

History: Starting from the 2nd round, in the beginning of a new round you receive an overview of the average results (as above) of all previous rounds.

Report sheet about the decisions of participants of a previously conducted experiment: Each participant receives a report sheet about the decisions of participants of a previous experiment which was conducted in the eLab at the University Erfurt. In this report you will find average numbers of the decisions of the participants. Please read this report before you decide.

Total Payoff: The total payoff from the experiment is composed of the starting capital of 1000 tokens plus the sum of round payoffs from all 30 rounds. At the end of the experiment your total payoff will be converted into Euro with an exchange rate of 1 per 100 tokens.

Please note: Communication is not allowed during the whole experiment. If you have a question please raise your hand out of the cabin. All decisions are made anonymously, i.e., no other participant is informed about the identity of someone who made a certain decision. The payment is anonymous too, i.e., no participant learns what the payoff of another participant is.

We wish you success!
Report sheet for the experiment

<table>
<thead>
<tr>
<th>Pd.</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.3</td>
<td>3.8</td>
<td>7.4</td>
<td>13.1</td>
<td>-</td>
<td>6.2</td>
<td>44.4</td>
<td>23.0</td>
</tr>
<tr>
<td>2</td>
<td>8.3</td>
<td>3.6</td>
<td>5.4</td>
<td>14.4</td>
<td>-</td>
<td>4.5</td>
<td>43.2</td>
<td>30.8</td>
</tr>
<tr>
<td>3</td>
<td>8.3</td>
<td>3.8</td>
<td>3.9</td>
<td>15.3</td>
<td>-</td>
<td>3.3</td>
<td>42.4</td>
<td>35.8</td>
</tr>
<tr>
<td>4</td>
<td>6.5</td>
<td>5.5</td>
<td>3.2</td>
<td>15.1</td>
<td>-</td>
<td>5.6</td>
<td>41.9</td>
<td>26.7</td>
</tr>
<tr>
<td>5</td>
<td>7.3</td>
<td>4.8</td>
<td>2.9</td>
<td>16.6</td>
<td>-</td>
<td>3.5</td>
<td>41.7</td>
<td>36.1</td>
</tr>
<tr>
<td>6</td>
<td>6.6</td>
<td>5.4</td>
<td>2.1</td>
<td>16.3</td>
<td>-</td>
<td>0.7</td>
<td>41.3</td>
<td>45.3</td>
</tr>
<tr>
<td>7</td>
<td>5.0</td>
<td>7.0</td>
<td>0.9</td>
<td>16.5</td>
<td>-</td>
<td>5.3</td>
<td>40.6</td>
<td>25.6</td>
</tr>
<tr>
<td>8</td>
<td>8.1</td>
<td>5.9</td>
<td>2.4</td>
<td>17.7</td>
<td>-</td>
<td>2.9</td>
<td>41.4</td>
<td>39.2</td>
</tr>
<tr>
<td>9</td>
<td>5.4</td>
<td>6.6</td>
<td>2.1</td>
<td>18.6</td>
<td>-</td>
<td>1.5</td>
<td>41.2</td>
<td>45.4</td>
</tr>
<tr>
<td>10</td>
<td>3.9</td>
<td>8.1</td>
<td>2.3</td>
<td>17.0</td>
<td>-</td>
<td>3.3</td>
<td>41.4</td>
<td>36.8</td>
</tr>
<tr>
<td>11</td>
<td>5.3</td>
<td>6.8</td>
<td>2.1</td>
<td>19.0</td>
<td>-</td>
<td>1.8</td>
<td>41.3</td>
<td>44.3</td>
</tr>
<tr>
<td>12</td>
<td>4.5</td>
<td>7.5</td>
<td>1.4</td>
<td>19.0</td>
<td>-</td>
<td>0.8</td>
<td>40.6</td>
<td>46.1</td>
</tr>
<tr>
<td>13</td>
<td>3.0</td>
<td>9.0</td>
<td>2.6</td>
<td>18.5</td>
<td>-</td>
<td>1.6</td>
<td>41.5</td>
<td>44.8</td>
</tr>
<tr>
<td>14</td>
<td>3.4</td>
<td>8.6</td>
<td>1.2</td>
<td>19.2</td>
<td>-</td>
<td>1.3</td>
<td>40.7</td>
<td>46.1</td>
</tr>
<tr>
<td>15</td>
<td>2.4</td>
<td>9.6</td>
<td>0.2</td>
<td>19.3</td>
<td>-</td>
<td>0.9</td>
<td>40.1</td>
<td>48.1</td>
</tr>
<tr>
<td>16</td>
<td>1.8</td>
<td>10.3</td>
<td>4.8</td>
<td>18.8</td>
<td>-</td>
<td>1.1</td>
<td>42.9</td>
<td>46.9</td>
</tr>
<tr>
<td>17</td>
<td>1.9</td>
<td>10.1</td>
<td>4.6</td>
<td>19.5</td>
<td>-</td>
<td>0.2</td>
<td>42.8</td>
<td>50.9</td>
</tr>
<tr>
<td>18</td>
<td>1.9</td>
<td>10.1</td>
<td>2.2</td>
<td>19.3</td>
<td>-</td>
<td>0.9</td>
<td>41.3</td>
<td>47.9</td>
</tr>
<tr>
<td>19</td>
<td>1.8</td>
<td>10.4</td>
<td>1.5</td>
<td>19.6</td>
<td>-</td>
<td>0.4</td>
<td>40.9</td>
<td>50.2</td>
</tr>
<tr>
<td>20</td>
<td>1.1</td>
<td>10.0</td>
<td>2.1</td>
<td>19.4</td>
<td>-</td>
<td>0.4</td>
<td>41.3</td>
<td>50.2</td>
</tr>
<tr>
<td>21</td>
<td>1.1</td>
<td>10.0</td>
<td>0.3</td>
<td>18.7</td>
<td>-</td>
<td>0.5</td>
<td>40.2</td>
<td>49.0</td>
</tr>
<tr>
<td>22</td>
<td>1.0</td>
<td>11.0</td>
<td>2.1</td>
<td>18.1</td>
<td>-</td>
<td>1.7</td>
<td>41.3</td>
<td>44.6</td>
</tr>
<tr>
<td>23</td>
<td>1.3</td>
<td>10.6</td>
<td>1.3</td>
<td>19.5</td>
<td>-</td>
<td>0.9</td>
<td>40.8</td>
<td>45.0</td>
</tr>
<tr>
<td>24</td>
<td>1.5</td>
<td>10.5</td>
<td>1.7</td>
<td>19.9</td>
<td>-</td>
<td>0.2</td>
<td>41.0</td>
<td>51.3</td>
</tr>
<tr>
<td>25</td>
<td>1.1</td>
<td>10.9</td>
<td>1.1</td>
<td>19.9</td>
<td>-</td>
<td>0.6</td>
<td>40.7</td>
<td>49.6</td>
</tr>
<tr>
<td>26</td>
<td>0.9</td>
<td>11.1</td>
<td>1.4</td>
<td>19.6</td>
<td>-</td>
<td>0.9</td>
<td>40.9</td>
<td>48.1</td>
</tr>
<tr>
<td>27</td>
<td>0.5</td>
<td>11.5</td>
<td>0.0</td>
<td>19.5</td>
<td>-</td>
<td>1.1</td>
<td>40.0</td>
<td>47.5</td>
</tr>
<tr>
<td>28</td>
<td>0.8</td>
<td>11.3</td>
<td>0.0</td>
<td>19.7</td>
<td>-</td>
<td>0.7</td>
<td>40.0</td>
<td>46.8</td>
</tr>
<tr>
<td>29</td>
<td>0.9</td>
<td>11.1</td>
<td>1.4</td>
<td>19.8</td>
<td>-</td>
<td>1.0</td>
<td>40.9</td>
<td>47.7</td>
</tr>
<tr>
<td>30</td>
<td>1.0</td>
<td>11.0</td>
<td>0.1</td>
<td>20.0</td>
<td>-</td>
<td>0.2</td>
<td>40.1</td>
<td>51.3</td>
</tr>
</tbody>
</table>

Average over all periods

| 3.4 | 8.6 | 2.9 | 18.8 | - | 1.4 | 41.8 | 45.7 |

Figure 3: The social history
References

